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Background and Motivation

CARB'’s longstanding scientific need/interest in poty-relevant
assessment of HDV emissions

In 2000, Dr. Alan Lloyd asked staff the questionis diesel with a filter
as “clean” as CNG?
— Phase I: Study of emissions from CNG and clean dielstransit buses
— Successful 2001-2003 multi-division, multi-agemoyestigation
— Half a dozen publications and a dozen invitedgmegions (many at CRC meetings)
— Answer = YES, both were pretty clean, but can/H@aen made cleaner

Phase Il builds on thetriumphs and defeatsof Phase .
— Position CARB to advangeoactively on emerging motor vehicle emissions issues:
« Ultralow emissions from emerging technology andaated aftertreatment
* Measurement instrumentation and protocols
» Relative toxicity of PM components (volatile vamvolatile fraction)
« ACES
— CARB needs data for 2010-like vehicles

— The retrofit systems of today are a glimpse ihtogroduction-ready OEM systems of
the future

— Assessing emission reduction and toxicity relevarthe older system



Retrofit Device Test Matrix
4 vehicles, 8 configurations, 3 driving cycles

Vehicle Af tertreatment Abbreviation
Baseline
Veh#1 none
. Veh #1
CRT®
1998 Cummins Diesel Vanadium  [9< Veh #1
11L, 360,000 miles SCR [ _ o
50,000 mi V-SCRT
Zeolite: Veh #1
- = Z-SCRT®*
50,000 mi 0 mi

*SCRT® systems used in this project are development protot ypes not commercial units .



Test Matrix (cont’d)

4 vehicles, 8 configurations, 3 driving cycles
Vehicle Af tertreatment Abbreviation

Veh#2, 1999 International Diesel

[ DPX

30,000 mi

: Only tested Veh#2
7.6L, 40,000 miles for nucleation CRT2®
Veh#3 2003 Cummins Diesel,
Veh#3
o B Horizon
B e 31,000 mi
5.9L, 50,000 miles
Veh#4 2006 Cummins Diesel w/ Allison Hybrid drive
, 0 Veh#4
CCRT®
1,000 mi :

5.9L, 1,000 miles



Experimental Setup @ CARB’s HDV Emissions
Laboratory

Dilution Air CVS Tunnel
’ Q=2600 or 1600 cfm

Exhaust from Testing Vehicles

FTIR Filters NanoMOUDI Cartridges
N,O, NH,
%‘Zﬂ PM, organics Carbonyls
Bags traps) and lons
pads PM, PAHS, :
Gases, VOCS || Nitro-PAHs : Particle
’ HiVol Characterization
Sioutas elements, EEPS. DMS
Impactor @ EC/OC, Organics, multiple CPCs,
Mutagenicity lons, Redox PAS, EAD
V, 0O, activity
|
VACES Thermaldenuded
Biosampler Sample
(Suspension) and
Chemical assay Metals, lons, Redox
for redox activity activity, CPC
and 6
electrophilicity




NO, Emissions

NO, Emissions [g/mi]
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NOTE: Preliminary results

* SCR reduced NO, by
approximately 80% and
90% for UDDS and cruise
cycles respectively

 Catalytic surfaces
increase fraction of NO,,
to as much as 50% of NO,
for the CCRT®

Note: although not shown,
during idle, no SCR NO,
reduction and NO,:NOy
ratio is low in all
configurations.



Realtime NOx Concentrations

a) Cruise 50mph

b) UDDS

Engine Out Temp [T ]

Zeolite SCRT
500
400 7W
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= &< 300
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* SCR reduction of NO, is
temperature dependent

« Good reduction during
highway operation

» Poor reduction in stop-
and-go activity

G: good NOx reduction
P: poor NOx reduction
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mg/mi

PM Mass Emissions

PM Mass Emissions [mg/mi]
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NOTE: Preliminary results

 Aftertreatment in Veh#1
reduced PM emissions by
90+%

» Reductions were
greatest for UDDS cycle

 In newer engines (Veh#3
and Veh#4) retrofits
reduced PM to near LOD
of gravimetric ref. method

Note: although not shown,
DPFs reduced PM during
idle >98%.



Much continued interest in ultrafine
particle emissions
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Average Size Distribution

Average Size Distribution
Cruise at 50mph - Measured in the CVS

(uncorrected for dilution)

Veh#1 Baseline
Veh#1 CRT1®
Veh#1 V-SCRT®
Veh#1 Z-SCRT®
Veh#2 DPX

- = = .Veh#2 CRT2®
- - = .Veh#3 - Horizon
- = = .Veh#4 CCRT®
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Particle Size [nm]

Average Size Distribution
UDDS - Measured in the CVS

(uncorrected for dilution)
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Veh#1 Baseline
Veh#1 CRT1®
Veh#1 V-SCRT®
Veh#1 Z-SCRT®
Veh#2 DPX

= = = .Veh#2 CRT2®
= = = .Veh#3, Horizon
= = = .Veh#4, CCRT®

-----------

SR —

Particle Size [nm]

Ref: Herner et al., AAAR, Reno, 2007

Accumulation mode seen in: Veh#1 Baseline

Nucleation mode seen in:
Veh#1 CRT1®

Veh#1l V-SCRT®

Veh#l Z-SCRT®

Veh#2 DPX

NO nucleation mode in
Veh#1 Baseline

Veh#2 CRT2® Low mileage
Veh#3 Horizon device
Veh#4 CCRT®

Nucleation appears to be
neither vehicle nor device
specific

NOTE: Preliminary results
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When Does Nucleation Occur?

Cruise @ 50 mph

Veh#2 DPX Cruise at 50mph
Particle Size Distribution

UDDS

Veh#2 DPX UDDSx2
Particle Size Distribution
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 Catalytic surfaces can store sulfate

 Conversion of SO, to SO; is
temperature dependent

Each configuration emits nucleation mode
particles once the post-aftertreatment exhaust
reaches a critical temperature:

T
T

Veh#l, V-SCRT® = 330°C
Veh#1, CRT1® =373°C

crit

crit

T
T

Veh#l, Z-SCRT® = 373°C
Veh#2, DPX = 315°C

crit

crit

Ref: Herner et al., AAAR, Reno, 2007
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Particle Mass Size Distribution
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Number vs Mass Emission Factors
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Under certain conditions we saw reduced massiiwdmeced number emissions

Horizon and Hybrid (CCRT)Wwithout nucleation mode particle formation) lie in the

left corner in the figure suggesting reduction oftbonumber and mass EF.

Ref: Biswas et al., Atmos. Env., 2008 (in print)
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Particle Volatility — Number Based R = Neyhaust/ Ntp

Veh #1 Veh #2 Veh #3 Veh #4
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Summary

In general, retrofits are accomplishing their design intent
SCR retrofits can reduce NO, emissions better than 80%, except during cold cycles
Remarkable reduction of PM mass emissions (>90%) by the retrofit devices tested

Occasional formation of large number of nucleation mode particles by retrofits that
contain catalytic surfaces

Catalytic surfaces store sulfate for thousands of miles, suppressing nucleation

Upon aging, retrofits promote nanoparticle formation when exhaust reaches a critical
temperature

For some retrofits, nucleation mode particle account for a significant fraction of mass
emission in the same particle size range

For some retrofits, total particle number emissions increased as mass emissions
decreased

The majority of the particles by number evaporated upon heating, suggesting that
particles are predominantly internally mixed and semi-volatile
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Thank you!

See also:
SESSION 9 — Particulate Matter
Wednesday 4/2/08
3:25 PM Presentation

Air Toxic Emissions from HD Diesel Vehicles
Equipped with NOx and PM Retrofits

M.-C. Oliver Chang , Yanbo Pang, Paul Rieger, Jorn D. Herner, Tao Hual,

Mark Fuentes, and Alberto Ayala
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